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A B S T R A C T

Few-shot object detection involves adapting an existing detector to a set of unseen categories with few
annotated examples. This data limitation makes these methods to underperform those trained on large labeled
datasets. In many scenarios, there is a high amount of unlabeled data that is never exploited. Thus, we
propose to exPAND the initial novel set by mining pseudo-labels. From a raw set of detections, xPAND
obtains reliable pseudo-labels suitable for training any detector. To this end, we propose two new modules:
Class and Box confirmation. Class Confirmation aims to remove misclassified pseudo-labels by comparing
candidates with expected class prototypes. Box Confirmation estimates IoU to discard inadequately framed
objects. Experimental results demonstrate that xPAND enhances the performance of multiple detectors up to
+5.9 nAP and +16.4 nAP50 points for MS-COCO and PASCAL VOC, respectively, establishing a new state of
the art. Code: https://github.com/PAGF188/xPAND.
1. Introduction

Object detection involves the process of identifying the class and
position of all objects of interest that might appear in an image. In the
last years, great success has been achieved in this field by training mod-
els with large databases of human-annotated labels [1–3]. However,
the need to annotate large amounts of data limits the applicability of
such object detectors in many real scenarios, as their performance drops
significantly when data is limited. In response to this challenge, the
emerging field of few-shot learning has gained prominence.

Few-shot learning techniques aim to extract general knowledge
from large collections of base data and adapt quickly to limited novel
data. Image classification with few-shot techniques has been widely
studied as the first attempt to apply few-shot methods in computer
vision [4–8]. Recently, the problem of few-shot object detection (FSOD)
has attracted significant attention in order to replicate the success
achieved in the field of image classification. Nonetheless, the severe
scarcity of labeled data for novel classes hinders the performance
compared to approaches trained on large datasets.

The inclusion of unlabeled data for novel categories, which tends to
be abundant in many scenarios, might mitigate this data scarcity. This
approach has the potential to improve the detection precision at no
additional annotation cost. The integration of unlabeled data has been
extensively studied in the field of Semi-Supervised Object Detection
(SSOD), and has recently begun to be explored within the few-shot
paradigm [9]. While the objective in both cases is to increase the num-
ber of labeled samples through pseudo-label mining, the availability
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of abundant annotations for base categories is a key difference. SSOD
methods aim to train an object detector from scratch on partially an-
notated datasets without any large fully annotated base training set. In
contrast, FSOD approaches seek to adapt general knowledge extracted
from this base set to new categories. In this paper, we propose to
exPAND the initial novel set by mining pseudo-labels. Thus we propose
a pseudo-label mining pipeline for FSOD that can be combined both
with few-shot and standard object detectors. Fig. 1 shows that xPAND
consistently increases the average precision on the novel categories
(nAP) —those with very few annotations— for several object detectors
on different shot sizes.

The standard pseudo-labeling procedure consists of: (i) using a
detector, trained on a small labeled dataset, to generate an initial set of
pseudo-labels from the unlabeled data; (ii) filtering these pseudo-labels;
and (iii) retraining the detector with both the original labeled data and
the filtered pseudo-labels.

The mined pseudo-labels are, however, biased by the detector,
i.e., those objects similar to the initial labeled data are typically de-
tected more accurately and with higher confidence, while those dis-
similar have a higher probability of being overlooked. This could limit
the variability of the training set, reducing the improvement of the final
detector.

Most methods based on pseudo-label mining heavily rely on the
detection confidence to include high-quality pseudo-labels in the train-
ing set, neglecting the influence of the detector bias. Fig. 2 shows the
effect of this bias when retraining a few-shot object detector. Selecting
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Fig. 1. xPAND can be combined with any type of detector, either few-shot or standard,
significantly improving the precision of the novel categories (nAP) in few-shot scenarios
by exploiting the unlabeled data. Results show the nAP of five detectors, and the
increase in nAP after applying xPAND with those detectors on the MS-COCO dataset
for 10- and 30-shots.

Fig. 2. nAP for DeFRCN [10] with different pseudo-labeling techniques on MS-COCO
10-shot dataset. In red oracle results. (i) Base, DeFRCN [10] without pseudo-labeling;
(ii) xPAND, DeFRCN+xPAND; (iii) high-confidence oracle and (iv) mid-confidence
oracle, DeFRCN improved by filtering detections with confidence thresholds of 0.9
and 0.5, respectively, and removing those with an IoU less than 0.7 with ground
truth. While confidence-based pseudo-labeling limits dataset diversity, xPAND enhances
diversity and effectively filters noisy pseudo-labels, narrowing the gap to the best oracle
results.

with an oracle high-confidence detections as pseudo-labels causes a
performance drop of −0.9 points in nAP, while selecting the same
number of mid-confidence detections with the oracle, improves nAP
+4.7 points. This observation effectively justifies our hypothesis that
detection confidence is not a reliable estimator of pseudo-label quality.

Ideally, we would like to set the confidence threshold as low as
possible to increase diversity. However, this introduces more noisy
pseudo-labels to the initial set, requiring a strong filtering pipeline to
remove them. Following this idea, xPAND starts with a set of unreliable
pseudo-labels and enhances them by automatically filtering out those
with incorrect class labels and/or inaccurately framed bounding boxes.
The high diversity of the pseudo-labels selected by xPAND, together
with its ability to filter noisy pseudo-labels, boosts the performance of
the detector—+2.3 points in nAP for the example shown in Fig. 2.

To summarize, our contributions are as follows:

• We propose xPAND, a pseudo-label mining pipeline for FSOD
that allows the extraction of high-quality and diverse pseudo-
labels from a set of raw candidates obtained with any detector.
The diversity of the mined pseudo-labels, and the robust filtering
capabilities of our pipeline, enhances the performance of the de-
tector, effectively addressing the inherent limitations of few-shot
scenarios.
2 
• A Class Confirmation module, built as a few-shot classifier on
the meta-learning approach through contrastive learning. It elim-
inates misclassified pseudo-labels by comparing them with the
prototype of their expected class.

• A Box Confirmation module, constructed as an Intersection over
Union (IoU) estimator, which filters out incorrectly framed pseudo
labels.

• An extensive experimentation on MS-COCO and PASCAL VOC
datasets using five different baseline detectors. Results show that
xPAND sets a new state of the art for both MS-COCO and PASCAL
VOC.

2. Related work

Two popular approaches to learn an object detector with few anno-
tated instances are FSOD and SSOD. In FSOD, abundant annotations for
a set of base categories are available, while annotated data for novel
categories is scarce. The objective of FSOD is to detect objects of novel
categories by leveraging knowledge extracted from base categories. A
related problem is Generalized FSOD, in which the performance of
the final detector in base categories is also relevant. SSOD aims to
exploit large amounts of unlabeled data without defining a base fully
annotated training set. Our proposal is framed into FSOD, although it
takes inspiration from SSOD.

Most common SSOD strategies to improve the performance are con-
sistency regularization and pseudo-labeling. Consistency regularization
forces the method to generate the same prediction under different
transformations, like data augmentation, while pseudo-labeling exploits
the unlabeled data to automatically generate new pseudo-labels. Most
SSOD are based on a teacher-student architecture for knowledge dis-
tillation. Unbiased Teacher [11] focuses on solving class imbalance
for exploiting pseudo-labeling. This is improved in Unbiased Teacher
v2 [12] by introducing a regression loss for the pseudo-labels. In [13]
they also follow a teacher-student framework but adapted to one-stage
detectors. Finally, [14] adapts the teacher-student architecture to the
DETR-based framework [15].

FSOD is usually solved following two paradigms: meta-learning
and fine-tuning. Meta-learning approaches [16–21] focus on learning
a distance metric in which classification is performed by comparing
an annotated support set with a query image. Fine-tuning-based meth-
ods [10,22–25], approach the problem as a transfer learning scenario,
where a model is learned from base categories and adapted to novel
categories by fine-tuning. TFA [22] pioneered the two-phase fine-
tuning approach by adapting the final layers of the base model on few
examples of novel classes. DeFRCN [10] modifies the Faster R-CNN
framework by introducing two key components: a Gradient Decoupled
Layer, which adjusts gradient scaling during the backward process, and
a Prototypical Calibration Block, aimed at tuning the confidence scores
for classification. D&R [26] refines DeFRCN via knowledge distillation.
Leveraging CLIP [27] —a multi-modal large-scale pre-trained model—
, it introduces a new branch in the FSOD approach to extract text
embedding representations of the categories. These text embeddings are
aligned with the original visual features to guide the learning process
towards a general and valuable semantic knowledge.

Self-supervised learning has improved object detection by pre-
training with large unlabeled datasets. This is the case of imTED [23],
which leverages a fully pretrained feature extraction path. MAE [28]
is a masked autoencoder that learns to reconstruct the original image
given its partial observation. DINO [29] uses a self-distillation process
in which a teacher-student architecture learns to relate two slightly
modified views of the same image. Both our Class and Box Confirmation
modules are built on vision transformers (ViT) [30] pre-trained through
self-supervision, trained on the base set, and fine-tuned on the novel
set.

Another way to exploit unlabeled data in a few-shot framework is
pseudo-labeling, which is inspired by semi-supervised learning. The
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Fig. 3. Main stages of xPAND. The resulting set of pseudo-labels 𝑓 𝑖𝑛𝑎𝑙 (green boxes) expands the initial training set, boosting the detector performance. Discarded pseudo-labels
𝑑 𝑖𝑠𝑐 (red boxes) are ignored in the retraining of the detector. The total number of pseudo-labels and the good pseudo-labels (TP) —according to ground truth, correctly classified
and with 𝐼 𝑜𝑈 > 0.5— are shown for each stage. The box plots show the IOU between pseudo-labels and ground truth. Data from imTED+xPAND on MS-COCO 10-shot. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
idea is to expand the initial novel training set by adding pseudo-labels
from unlabeled objects of novel categories to boost the performance
of the detector. LVC [9] is the most representative work in this line.
It defines a new customized detector to acquire candidate pseudo-
labels. Then, the candidates with incorrect class labels are filtered out
with a 𝑘NN classifier that uses features from a self-supervised ViT
model. Finally, the bounding boxes are refined with a cascade of three
class-agnostic regressors.

xPAND differs significantly from previous pseudo-labeling methods
for FSOD and SSOD in two key ways. First, xPAND features plug-and-
play adaptability, meaning it can be seamlessly integrated with any de-
tector, whether standard or few-shot, whereas state-of-the-art methods
often require specific detectors. Second, xPAND operates with a more
diverse yet noisy pseudo-label set due to its reduced threshold for initial
filtering. The Class and Box Confirmation modules effectively filter
out noisy pseudo-labels, resulting in a final set of high-quality, diverse
labels. This approach contrasts with traditional Semi-Supervised Object
Detection (SSOD) methods, which typically rely on higher filtering
thresholds and have less flexibility in detector choice.

3. FSOD with pseudo-label mining

3.1. Problem definition

The standard configuration of the few-shot object detection prob-
lem [20,22] consists of an image dataset, , with two sets of annota-
tions, 𝑏𝑎𝑠𝑒 and 𝐾

𝑛𝑜𝑣𝑒𝑙, where each annotation 𝑦𝑖 = (𝑐𝑖, 𝑏𝑖) ∈ 𝑏𝑎𝑠𝑒∪𝑛𝑜𝑣𝑒𝑙
is defined by its category 𝑐𝑖 and its bounding box 𝑏𝑖. 𝑏𝑎𝑠𝑒 is composed
of exhaustively annotated instances of base classes, 𝐶𝑏𝑎𝑠𝑒, while 𝐾

𝑛𝑜𝑣𝑒𝑙
consist of only 𝐾 annotated instances per category, being 𝐶𝑛𝑜𝑣𝑒𝑙 the set
of novel classes. 𝐶𝑏𝑎𝑠𝑒 and 𝐶𝑛𝑜𝑣𝑒𝑙 are non-overlapping groups, i.e.𝐶𝑏𝑎𝑠𝑒 ∩
𝐶𝑛𝑜𝑣𝑒𝑙 = ∅, and 𝐾 must be a small number—usually between 1 and 30.
Objects of novel categories are not exhaustively annotated, so it is usual
that in  there is a set of unlabeled objects belonging to 𝑐𝑖 ∈ 𝐶𝑛𝑜𝑣𝑒𝑙.
xPAND exploits this set of unlabeled objects with a pseudo-label mining
pipeline to expand the novel dataset with high-quality pseudo-labels,
so that the final detector can be trained on the novel categories with a
larger amount of instances, boosting its performance.

3.2. xPAND

Fig. 3 shows the xPAND pipeline. First, a detector —xPAND is not
tied to any particular detector— trained on 𝑏𝑎𝑠𝑒∪𝑛𝑜𝑣𝑒𝑙 is executed on
 to generate the initial pseudo-label set. Many of these initial pseudo-
labels have wrong categories and/or are poorly framed, especially those
with mid-confidence values which are the ones that most improve the
diversity of the pseudo-label set. Therefore, including those pseudo-
labels directly in the training set of the final detector would hinder
the learning process. In the first stage, Initial Filtering applies Non-
maximum Suppression (NMS) and a confidence threshold 𝜏 to remove
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very low-quality pseudo-labels. Previous pseudo-labeling methods rely
on the detection score as the primary filtering criteria to discard most
of the initial pseudo-labels. Although this ensures that only high-quality
detections are considered after a simple initial filtering step, this metric
might be heavily influenced by the detector bias. xPAND minimizes that
by imposing a mid-confidence threshold 𝜏, allowing a wide range of
detections to be selected as pseudo-label candidates, thus significantly
increasing the diversity of the pseudo-label set and improving the
accuracy of the detector once the noisy pseudo-labels are filtered out
in the next stages.

The second stage is Class Confirmation (Section 3.2.1), which con-
sists of a meta-classifier with a DINO-pre-trained [29] ViT [30] as a
feature extractor. It aims to exclude misclassified pseudo-labels by com-
paring the detection with the prototype of the predicted class. If both
match, the pseudo-label is preserved. To ensure optimal discrimination
performance, the training process follows a two-stage contrastive learn-
ing strategy. First, we leverage general knowledge from base categories,
and then the model is fine-tuned on novel categories.

The next stage consists of a Box Confirmationmodule (Section 3.2.2),
that aims to remove localization errors in the pseudo-label set. This
component evaluates the localization accuracy by estimating the over-
lap between the pseudo-label candidate and the actual object. It also
follows a two-stage fine-tuning learning approach leveraging a MAE-
pre-trained [28] feature extractor. Pseudo-labels with a low estimated
overlap are discarded. Fig. 3 shows how, after Box Confirmation, the
distribution of pseudo-labels shifts towards higher overlaps with the
ground truth, caused by the elimination of many poorly framed boxes.

The pseudo-label set resulting from the previous filtering stages is
prone to a high class imbalance, mainly due to the initial detector bias.
To address this, we set a maximum imbalance factor. Let |𝑐𝑖 | be the
number of pseudo-labels for category 𝑐𝑖, then the maximum number of
pseudo-labels that are randomly selected for each category is 𝜆 |𝑐𝑚𝑖𝑛 |,
being 𝑐𝑚𝑖𝑛 the category with the lowest number of pseudo-labels.

The output of the pipeline is a set of final pseudo-labels 𝑓 𝑖𝑛𝑎𝑙,
and a set of discarded object annotations 𝑑 𝑖𝑠𝑐 . 𝑑 𝑖𝑠𝑐 includes all
the annotations discarded by xPAND throughout its different stages.
During the final end-to-end training, the detector is provided with
𝑏𝑎𝑠𝑒 ∪ 𝐾

𝑛𝑜𝑣𝑒𝑙 ∪ 𝑓 𝑖𝑛𝑎𝑙, but also with 𝑑 𝑖𝑠𝑐 . 𝑑 𝑖𝑠𝑐 allows the detector
to ignore image regions that may potentially contain objects. These
ignored regions are neither background nor high-quality pseudo-labels,
i.e., RPN-generated proposals that overlap with them are not taken into
account for loss computation.

To capitalize that the detector obtained through xPAND surpasses
the base-detector performance, xPAND executes its pipeline iteratively.
The pseudo-label set of the iteration 𝑗 is generated with the detector
obtained at the end of iteration 𝑗 − 1. The stopping criterion is:

median
𝑐 ∈𝐶

⎛

⎜

⎜

𝑗+1
𝑓 𝑖𝑛𝑎𝑙(𝑐𝑖)
𝑗

⎞

⎟

⎟

< 𝜒 , (1)

𝑖 𝑛𝑜𝑣𝑒𝑙

⎝

𝑓 𝑖𝑛𝑎𝑙(𝑐𝑖) ⎠
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Fig. 4. Class Confirmation architecture. The upper branch receives the object query
to be confirmed (𝑞). The middle and lower branches receive sets of positive (𝑀𝑝𝑜𝑠)
and negative (𝑀𝑛𝑒𝑔) ground-truth objects. Triplet loss 𝑡𝑟𝑖 forces highly discriminative
representations between the objects embeddings, 𝑒𝑞 , 𝑒𝑝𝑜𝑠, 𝑒𝑛𝑒𝑔 . 𝑐 𝑒 is cross entropy.
Numbers represent the size of the tensors.

so that xPAND stops in a given iteration 𝑗 when the median increment
in the number of pseudo-labels for each category is lower than a
threshold 𝜒 .

3.2.1. Class confirmation
The Class Confirmation module determines whether to discard or

retain pseudo-labels based on their similarity to their corresponding
class prototypes. It is designed as a few-shot classifier built on the meta-
learning approach, which learns a distance metric that can accurately
determine the similarity between objects.

Fig. 4 shows the proposed architecture. Following a contrastive
learning setting, it is composed of three branches. The upper branch
receives as input an object query (𝑞) whose label has to be confirmed.
The middle and lower branches are given the sets of ground-truth
objects (𝑀𝑝𝑜𝑠) and (𝑀𝑛𝑒𝑔), respectively, expected to belong to and not
to belong to the query class (𝑐).

The backbone 𝜙 processes 𝑞, 𝑚𝑝𝑜𝑠 ∈𝑀𝑝𝑜𝑠 and 𝑚𝑛𝑒𝑔 ∈𝑀𝑛𝑒𝑔 to extract
their corresponding feature maps. To build it, we leverage recent ad-
vancements in self-supervised learning. Self-supervised models, trained
on extensive unlabeled data, can learn general features that are useful
for a variety of tasks. DINO [29] has proven effective for pre-training
visual transformers and extracting classification-ready features. Conse-
quently, we adopt the output CLS token of a DINO-pre-trained ViT [30]
as the object embedding.

As 𝑀𝑝𝑜𝑠 and 𝑀𝑛𝑒𝑔 contain multiple support objects of the posi-
tive and negative categories, the prototype feature map is created by
averaging the features for each object in the support set:

𝜓(𝑀) = 1
|𝑀|

∑

𝑚∈𝑀
𝜙(𝑚), (2)

where 𝑀 ∈ {𝑀𝑝𝑜𝑠, 𝑀𝑛𝑒𝑔}. The feature maps 𝜙(𝑞), 𝜓(𝑀𝑝𝑜𝑠) and 𝜓(𝑀𝑛𝑒𝑔)
are fed into a shared fully connected layer to obtain 𝑒𝑞 , 𝑒𝑝𝑜𝑠 and 𝑒𝑛𝑒𝑔 .
Finally, 𝑒𝑞 is concatenated with 𝑒𝑝𝑜𝑠 and 𝑒𝑛𝑒𝑔 generating positive and
negative feature vectors that are passed to two fully connected layers.
The final layer determines whether both elements belong to the same
category.
4 
Fig. 5. Box Confirmation architecture. The input is an image with a pseudo-label. After
multi-scale feature extraction, ROI Align object features are passed through a regression
header with a sigmoid function to estimate the expected IoU. Numbers represent the
size of the tensors.

The training of the Class Confirmation module follows a two-stage
fine-tuning strategy. In the initial phase, the model is trained with
samples of base classes, where the query and support samples come
from 𝑏𝑎𝑠𝑒. In the second phase, a fine-tuning on 𝑛𝑜𝑣𝑒𝑙 is performed
to boost the performance on the novel classes. In both phases, training
uses triplets (𝑞, 𝑀𝑝𝑜𝑠 and 𝑀𝑛𝑒𝑔).

To optimize the model, we define a multi-task loss function com-
posed of a cross-entropy loss and a triplet loss. The cross-entropy loss
is computed with the logits of each of the two classes. For a batch, it
is formulated as follows:

𝑐 𝑒(𝑋 , 𝑌 ) = 1
𝑛

𝑛
∑

𝑖=1

2
∑

𝑡=1
−𝑌𝑖,𝑡 𝑙 𝑜𝑔

𝑒𝑥𝑝(𝑋𝑖,𝑡)
∑2
𝑗=1 𝑒𝑥𝑝(𝑋𝑖,𝑗 )

, (3)

where 𝑛 is the number of examples in the batch, 𝑋 are the logits, and
𝑌 follows a one-hot encoding—indicates whether the query and the
support belong to the same category.

Although cross-entropy is well-suited for classification tasks, we aim
to construct a discriminative feature space enabling the differentiation
of object pairs based on their similarity. To improve learning, we
integrate a triplet loss [31] into our framework, encouraging the model
to generate highly discriminative feature representations:

𝑡𝑟𝑖(𝑄, 𝑃 , 𝑁) = 1
𝑛

𝑛
∑

𝑖=1
𝑚𝑎𝑥{𝑑(𝑒𝑖𝑞 , 𝑒𝑖𝑝𝑜𝑠) − 𝑑(𝑒𝑖𝑞 , 𝑒𝑖𝑛𝑒𝑔) + 𝛿 , 0} (4)

where 𝑛 is the number of examples in the batch, (𝑒𝑖𝑞 ∈ 𝑄, 𝑒𝑖𝑝𝑜𝑠 ∈ 𝑃 , 𝑒𝑖𝑛𝑒𝑔 ∈
𝑁) is the triplet formed by the query, positive and negative feature
vectors, 𝛿 is the margin, and 𝑑 is the Euclidean distance.

The final loss function is 𝑐 𝑙 𝑎𝑠𝑠 = 𝑐 𝑒(𝑋 , 𝑌 ) + 𝑡𝑟𝑖(𝑄, 𝑃 , 𝑁), which is
crucial not only for constructing an effective classifier but also for cre-
ating a feature space that enhances intra-class similarities while accen-
tuating inter-class dissimilarities. During inference, the negative branch
is deleted, and the Class Confirmation module receives a pseudo-label
to be confirmed and a set of support objects of the expected category.
Those pseudo-labels that are not confirmed are filtered out.

3.2.2. Box confirmation
The Box Confirmation module is an IoU estimator. It aims to predict

the expected IoU between a pseudo-label bounding box and the ground
truth. Fig. 5 shows the proposed architecture. It receives as input an
image containing a pseudo-label. Similar to the Class Confirmation
module, we also harness the benefits of unsupervised pretraining on
pretext tasks to establish the backbone. MAE [28] pretraining method
involves masking random patches of an input image, and training the
model to reconstruct the missing pixels. This task aligns with our objec-
tive of estimating the IoU for objects. Specifically, pixel reconstruction
helps the model in learning not only to identify object locations within
an image, but also to discern the presence —or absence— of parts of
objects. Therefore, the Box Confirmation backbone is implemented as
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a MAE-pretrained ViT [28], generating high-quality features for object
localization.

As in previous work on object detection with plain non-hierarchical
ision transformers [2], we apply a set of deconvolution layers to
enerate a multiple-level feature map that enables multi-scale object
ocalization. Then, the specific features of the candidate pseudo-label
re obtained through the ROI Align method [32]. These features are

fed to a regression header, comprising four convolutional layers and
wo fully connected layers. The final fully connected layer has a single

output neuron with a sigmoid activation function. This configuration
yields a continuous value within the range of 0 to 1, serving as an
estimator for the IoU. Pseudo-labels can be discarded based on this
value.

The training of the Box Confirmation module follows a two-stage
fine-tuning strategy. In the initial phase, the model is trained with
bundant samples of base classes. To generate the training examples
e use the base initial detector, performing inference on 𝑏𝑎𝑠𝑒 and

electing a balanced set of detections at different IoU thresholds. In
he fine-tuning stage, due to the scarcity of annotated data for novel
lasses, the training examples are generated from 𝑛𝑜𝑣𝑒𝑙 by randomly
pplying offsets to the few annotated objects in each of the four primary
irections. From this set of randomly generated proposals we select,
s in the previous stage, an IoU-balanced set. In both stages, the
ptimization is performed using a binary cross-entropy loss function
o measure the dissimilarity between the predicted IoU and the actual
alue. The formulation of this loss function for a batch is as follows:

(𝑈 , 𝑉 ) = 1
𝑛

𝑛
∑

𝑖=1
−{𝑉𝑖 𝑙 𝑜𝑔 𝑈𝑖 + (1 − 𝑉𝑖) 𝑙 𝑜𝑔(1 − 𝑈𝑖)}. (5)

where 𝑛 is the batch size, 𝑈 contains the predicted IoU for each element
n the batch, and 𝑉 the actual IoU between the input bounding box and
he ground truth.

In inference, the Box Confirmation module receives both the image
and the pseudo-label bounding box. The pseudo-label is discarded if the
predicted IoU is lower than a specified threshold (𝛽).

4. Experiments

4.1. Experimental setup

We evaluate xPAND on both MS-COCO [33] and PASCAL VOC
2007/12 [34] benchmark datasets. For a fair comparison with previous
works, we follow the two main evaluation protocols and data splits for
FSOD: FSRW-like [20], i.e., a single support set, and TFA-like [22] with
0 support sets for MS-COCO and 5 supports sets for PASCAL VOC.

MS-COCO [33] has a total of 80 categories. In a few-shot sce-
ario [9,10,22], the 60 categories disjoint with PASCAL VOC are the

base classes, while the remaining 20 classes are the novel classes.
The number of instances per novel class —shot size— is 𝐾 ∈ {10, 30}.
Following previous work in few-shot object detection, we report the
standard MS-COCO evaluation metrics for novel categories: nAP (𝐼 𝑜𝑈 =
0.5 ∶ 0.95), nAP50 (𝐼 𝑜𝑈 = 0.5) and nAP75 (𝐼 𝑜𝑈 = 0.75)

PASCAL VOC 2007/12 [34] includes 20 object categories. Based
on previous papers [10,19,35], we use the combination of trainval
VOC07 and trainval VOC12 for training. VOC07 test set is used for
evaluation. We use 3 rotating splits, each containing 15 base classes
and 5 novel classes. The shot size is 𝐾 ∈ {1, 2, 3, 5, 10}. Following stan-
dard experimentation protocols, we report the mean Average Precision
(mAP)—setting an IoU threshold of 0.5.

To demonstrate xPAND’s effectiveness across different detection
frameworks, we integrated it with five distinct detectors: TFA [22],
DeFRCN [10], VitDet [2], D&R [26], and imTED [23]. TFA and DeFRCN
re CNN-based detectors that adapt the original Faster R-CNN [1] to the

few-shot problem. D&R [26] extends DeFRCN to incorporate knowledge
distillation from CLIP text category embeddings. VitDet and imTED are
ViT-based detectors, but only imTED has been specifically designed for
FSOD.
5 
Table 1
Ablation study for MS-COCO 10-shot —FSRW-like experimentation and a single
iteration—: base detector trained with no pseudo-labels (baseline), with all the initial
pseudo-labels (N), and with the pseudo-labels from different components of xPAND
pipeline —Initial Filtering (F), Class Confirmation (C), Box Confirmation (B) and
balanced sampling (S). AVG 𝛥nAP is the average variation across all detectors compared
to the corresponding baseline.

Configuration TFA DeFRCN VitDet D&R imTED AVG 𝛥nAP

Baseline 9.6 18.4 13.3 17.1 22.0 –

(1) N 6.5 13.5 8.4 11.7 14.3 −5.2
(2) F+S 10.9 19.4 16.9 17.2 26.3 +2.0
(3) F+C+S 11.3 19.6 18.2 17.5 27.4 +2.7
(4) F+B+S 11.4 20.1 17.2 17.8 26.0 +2.5
(5) F+C+B+S 11.6 20.5 18.7 18.6 27.5 +3.3

4.2. Implementation details

The Class Confirmation module uses as backbone a DINO-self-
supervised ViT-S/8 model pre-trained on ImageNet. We keep its weights
frozen. Input images are resized so that the smallest dimension is no

ore than 1024, while always preserving the original aspect ratio. We
adopt Adam optimization algorithm with a batch size of 24, 𝛽1 = 0.9,
nd 𝛽2 = 0.999. On both base training and fine-tuning, the learning
ate is set to 1 × 10−4 for the initial 5 epochs, and then reduced to
 × 10−5 for the final 5 epochs, with a triplet loss margin 𝛿 = 1. In
ase training, the support size is 10, while in fine-tuning, the support
ize corresponds to the shot number 𝐾. In both phases, images are
ugmented with horizontal flipping and color jittering—brightness 0.4,
ontrast 0.4, saturation 0.4, hue 0.2.

The Box Confirmation module uses as backbone a MAE-self-supervise
ViT-B model pre-trained on ImageNet. The network is trained end-
o-end using a batch size of 24 and the AdamW [36] optimization

algorithm with standard configuration and weight decay 0.1. In base
raining, the learning rate is set to 1 × 10−4 for 75 epochs. In the fine-

tuning stage, the learning rate is reduced to 1 × 10−5 for 8 epochs. In both
phases, images are randomly resized so that the short edge is between
1024 and 2048. Then, a random crop of 1024 × 1024 pixels is performed
as data augmentation. The minimum estimated overlap with the actual
object is set to 𝛽 = 0.8.

We remove from the initial pseudo-label set those detections with
 confidence score lower than 𝜏 = 0.5. The maximum imbalance factor
for the final pseudo-label set is set to 10, and the threshold for the

stopping criterion is 𝜒 = 25%. In the experiments, xPAND is always
executed with the same hyper-parameters for all the detectors, datasets
nd shot sizes.

4.3. Ablation study

Table 1 shows the ablation study for the different components of
xPAND and the five selected base detectors. For (1), all detections
are selected as pseudo-labels to retrain the detector. A significant
performance drop can be observed in every detector, loosing 5.2 nAP
points on average. This proves the need for robust filtering approaches
that limit the presence of inaccurate pseudo-labels in the final training
set. In (2), we apply the Initial Filtering and the final sampling to reduce
the class imbalance, overcoming the baseline by 2.0 points on average.
The inclusion of the Class Confirmation (3) and Box Confirmation (4)
modules further improves the nAP with an average difference with the
baseline of 2.7 and 2.5 nAP points respectively. Finally, the execution
of one iteration of all the components defined in xPAND achieves a total
improvement of 3.3 nAP points. This proves that the Class Confirmation
and Box Confirmation modules are complementary, and that they are
able to generate a high-quality pseudo-label set by filtering many of the
noisy pseudo-labels.

Fig. 6 shows the distribution of pseudo-labels before and after
applying xPAND. Those approaches that select only high-confidence
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Fig. 6. Distribution of pseudo-labels before (left) and after (right) xPAND. TP are
pseudo-labels with correct category.

Fig. 7. Influence of confidence threshold 𝜏. DeFRCN [10] 10-shot FSRW-like [20] on
MS-COCO.

Table 2
Impact of DINO/MAE pre-trained ViT backbones on the Class Confirmation (CC) and
Box Confirmation (BC) stages. DeFRCN [10] 10-shot FSRW-like experimentation [20]
on MS-COCO.

CC BC nAP

DINO MAE MAE DINO

✓ ✓ 20.5
✓ ✓ 20.4

✓ ✓ 19.7
✓ ✓ 19.7

pseudo-labels build a more reliable training set, although due to the
bias of the initial detector, the diversity of pseudo-labels is also low.
We strive to recover as many mid-confidence pseudo-labels as possible
to reduce the aforementioned bias issue, setting a confidence threshold
of 𝜏 = 0.5. The counterpart is that mid-confidence detections introduce
many noisy and unreliable pseudo-labels that require a strong filtering
pipeline. As we apply xPAND, the number of pseudo-labels signifi-
cantly decreases but, also, the proportion of correct pseudo-labels is
notably higher, particularly for the lower confidence cases. This enables
our method to consider a wider range of confidence scores without
dramatically reducing the quality of the training set.

Table 2 analyzes the influence of various pre-trained ViT backbones
on the Class Confirmation and Box Confirmation stages. It is clear that
DINO performs slightly better than MAE at the Class Confirmation
stage (nAP 20.5 vs. 19.7), indicating DINO’s advantage in obtaining
classification-ready features. At the Box Confirmation stage, the choice
between DINO and MAE has minimal effect, as both offer similar
performance.

Fig. 7 shows the influence of the confidence threshold 𝜏. Within the
broad range of 0.2 to 0.6, the value of 𝜏 has minimal impact, highlight-
ing xPAND’s filtering capability. However, as the threshold increases
and label diversity decreases, performance drops because many good
pseudo-labels are filtered out, and those that remain reflect detector
biases and fail to capture more diverse and informative instances.
This observation reinforces our hypothesis that relying exclusively
6 
Fig. 8. Influence of stop criterion threshold 𝜒 . TFA [22], DeFRCN [10], VitDet [2]
and imTED [23] detectors on both 10-shot and 30-shot FSRW-like [20] MS-COCO
experimentation.

on high-confidence thresholds for pseudo-labeling is ineffective. In-
stead, lowering the confidence threshold and applying a robust filtering
strategy, as implemented in xPAND, can lead to better results.

Fig. 8 presents a comparative analysis of the stop criterion 𝜒 across
four different detectors. The results demonstrate that 𝜒 is not highly
sensitive, implying that achieving optimal performance does not neces-
sitate extensive tuning. Furthermore, 𝜒 exhibits even lower sensitivity
in the 30-shot setting compared to the 10-shot setting, suggesting that
its influence diminishes as the shot size increases.

4.4. Comparison results

Table 3 shows the results of the state-of-the-art FSOD and SSOD
methods on the MS-COCO dataset. xPAND is able to significantly
improve all the detectors. For TFA, DeFRCN, and D&R, the improve-
ments range between +0.5 and +2.3 nAP points, but for ViT-based
detectors the improvements reach up to +5.9 nAP points. The less
inductive bias of modern ViT-based object detectors, such as VitDet,
makes them suffer from severe overfitting when training with few
examples. Thus, ViTDet underperforms other CNN-based detectors, like
DeFRCN. However, when expanding its training set with pseudo-labels,
ViTDet achieves very competitive results with a performance boost of
more than +5 nAP points for both 10 and 30-shot. Although imTED
mitigates the inductive bias issue by integrally pretraining the feature
extraction path to perform better in low-data regimes, it still highly
benefits from xPAND, improving nAP +5 and +3.5 points for 10 and
30-shot respectively. imTED+xPAND sets a new state of the art for both
shot sizes on the MS-COCO dataset, outperforming previous methods,
including those based on pseudo-labeling like LVC.

Concerning semi-supervised methods, Table 3 includes two origi-
nally SSOD detectors: Consistent-Teacher [44] and Semi-DETR [45].
Both utilize a teacher-student framework where the teacher generates
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Table 3
MS-COCO results following the experimental setting from [20]. Red, blue and green, represent 1st, 2nd and 3rd
respectively, and the numbers on the right of the arrows show the difference with the corresponding baseline.
† indicates our own experiments. ∗ indicates pseudo-labeling methods.

nAP
Method 10-shot 30-shot

TFA [22] (ICML 20) 10.0 13.7
DeFRCN [10] (ICCV 21) 18.5 22.6
FSOD-SR [25] (PR 21) 11.6 15.2
DCNet [37] (CVPR 21) 12.8 18.6
LVC∗ [9] (CVPR 22) 19.0 26.8
FCT [38] (CVPR 22) 15.3 21.4
CFA [39] (CVPR 22) 19.1 23.0
ViTDet† [2] (ECCV 22) 13.3 19.2
Meta-DETR [19] (TPAMI 22) 19.0 22.2
DCFS [40] (NIPS 22) 19.5 22.7
𝜎-ADP [35] (ICCV 23) 20.3 20.8
MLFDA [41] (CVPR 23) 18.8 23.4
Norm-VAE [42] (CVPR 23) 18.7 22.5
NIFF [43] (CVPR 23) 18.8 20.9
D&R† [26] (AAAI 23) 17.1 20.9
imTED [23] (ICCV 23) 22.5 30.2
Consistent-Teacher∗ † [44] (CVPR 23) 14.4 20.2
Semi-DETR∗ † [45] (CVPR 23) 22.7 29.3

TFA [22] (ICML 20) + xPAND 11.6↑1.6 16.0↑2.3
DeFRCN [10] (ICCV 21) + xPAND 20.5↑2.0 24.1↑1.5
VitDet [2] (ECCV 22) + xPAND 19.2↑5.9 24.4↑5.2
D&R [26] (AAAI 23) + xPAND 18.5↑1.4 21.4↑0.5
imTED [23] (ICCV 23) + xPAND 27.5↑5.0 33.7↑3.5
i
f

T
p

Table 4
MS-COCO results following the experimental setting from [22]. In bold face the best
results for each group. ‡ indicates a single iteration of xPAND. ±𝑥 is the confidence
interval.

10-shot 30-shot
Method nAP nAP50 nAP75 nAP nAP50 nAP75

TFA [22]
9.7
±0.6

18.1
±1.2

9.3
±0.6

12.7
±0.3

23.6
±0.5

12.2
±0.3

TFA + xPAND‡ 11.0
±0.7

19.8
±1.3

11.0
±0.7

14.7
±0.4

26.1
±0.6

14.9
±0.5

TFA + xPAND 12.0
±0.7

21.2
±1.3

12.1
±0.7

15.2
±0.4

26.7
±0.6

15.6
±0.5

DeFRCN [10]
19.0
±0.4

33.9
±0.7

19.0
±0.6

22.7
±0.3

39.8
±0.4

23.0
±0.5

DeFRCN + xPAND‡ 21.5
±0.3

36.5
±0.5

22.5
±0.4

24.0
±0.3

40.1
±0.4

25.4
±0.3

DeFRCN + xPAND 21.5
±0.3

36.5
±0.5

22.5
±0.4

24.1
±0.3

40.1
±0.4

25.4
±0.3

ViTDet [2]
12.5
±0.5

21.1
±0.8

12.9
±0.5

17.4
±0.5

28.8
±0.8

18.1
±0.7

ViTDet + xPAND‡ 18.7
±0.5

30.2
±0.9

20.1
±0.5

24.2
±0.4

38.1
±0.5

26.2
±0.5

ViTDet + xPAND 20.2
±0.5

32.0
±0.8

22.0
±0.5

25.2
±0.4

39.0
±0.6

27.6
±0.4

D&R [26]
15.5
±0.5

29.0
±1.2

14.6
±0.4

19.4
±0.4

35.5
±0.7

18.9
±0.4

D&R + xPAND‡ 17.5
±0.5

31.7
±1.1

17.5
±0.5

20.7
±0.3

37.3
±0.7

20.7
±0.3

D&R + xPAND 17.5
±0.5

31.7
±1.1

17.5
±0.5

20.7
±0.3

37.3
±0.7

20.7
±0.3

imTED [23]
19.1
±0.9

29.7
±1.4

20.6
±1.0

26.2
±1.0

38.8
±2.3

28.7
±1.1

imTED + xPAND‡ 26.2
±0.6

38.8
±0.9

29.2
±0.6

31.3
±0.9

45.9
±1.1

35.1
±1.0

imTED + xPAND 26.7
±0.7

39.0
±0.9

29.8
±0.7

30.7
±0.9

44.7
±1.2

34.5
±1.0

pseudo-labels to guide the student’s learning. Simultaneously, the stu-
dent updates the teacher’s weights via EMA. For a fair comparison,
we adapted these methods to the few-shot setting. Specifically, the
teacher and student were first trained on the fully labeled base classes.
Afterwards, a pseudo-labeling online training was performed on novel
classes, using both the teacher-generated pseudo-labels and the 10/30
annotated novel examples. xPAND outperforms the SSOD methods in
both 10-shot and 30-shot scenarios. This highlights the distinct chal-
lenges of SSOD and FSOD tasks, and indicates that xPAND is more
effective at managing the constraints of limited novel labeled data
when abundant base data is available.

We also conducted the experimentation with different support sets
following [22] (Table 4), including the baseline detector, a single
iteration of xPAND, and the standard execution of xPAND with several
7 
iterations. Results show that a single iteration of xPAND suffices to
improve base detectors in every metric for 10 and 30 shot sizes. The
terative execution of xPAND even improves the single iteration results
or TFA and ViTDet, for DeFRCN and D&R it has no impact, and for

imTED it is positive for 10-shot and negative for 30-shot. As in 3,
ViT-based detectors —ViTDet and imTED— benefit the most from the
combination with xPAND.

Table 5 shows a comparison with previous methods on PASCAL
VOC dataset for five different shot sizes and three different splits [20].
xPAND is able to improve all baseline detectors across various shot
sizes. The average nAP50 increments are 4.4, 4.7, 8.4, 8.5, 3.1 points
for TFA, DeFRCN, ViTDet, imTED, and D&R respectively. Furthermore,
the combination of D&R+xPAND yields superior performance com-
pared to prior approaches, thereby setting a new state of the art across
a majority of shots and splits.

In contrast to COCO, the transformer-based methods VitDet and
imTED —before applying xPAND— do not outstand in VOC. Consider-
ing that the size of VOC is 10 times smaller than COCO, this highlights
the data-hungry nature of transformers and their tendency to overfit
on datasets with significantly fewer training examples for both base
and novel categories. The combination of these methods with xPAND,
partially alleviates this problem for FSOD.

On VOC we also conducted a TFA-like experimentation [22] with
different support sets. The results for both the baseline detectors and
their integration with xPAND are presented in Table 6. It can be seen
how xPAND consistently enhances the performance of the baseline
detectors. The average increases in nAP50 are 3.6, 2.4, 4.6, 6.4, and
3.4 points for TFA, DeFRCN, ViTDet, imTED, and D&R respectively.

his underscores xPAND’s effectiveness as a consistent and impactful
seudo-label mining pipeline.

4.5. xPAND meets CLIP

In this section we explore the idea of using state-of-the-art Vision-
Language Models for pseudo-label generation. We conduct a compar-
ative analysis of xPAND and CLIP, evaluating their performance as
filtering mechanisms across various shot sizes. This analysis aims to
assess the individual filtering effectiveness of each method and to
explore their complementary strengths when combined.
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Table 5
PASCAL VOC results following the experimental setting from [20]. Red, blue and green, represent 1st, 2nd and 3rd. Numbers beside the arrows show the difference with
baseline. † indicates our own experiments.

Novel Set 1 Novel Set 2 Novel Set 3
Method 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

FSRW [20] (ICCV 19) 13.8 19.6 32.8 41.5 45.6 7.9 15.3 26.2 31.6 39.1 9.8 11.3 19.1 35.0 45.1
TFA† [22] (ICML 20) 21.3 22.8 25.2 28.7 34.3 7.1 16.6 22.0 22.1 19.2 16.1 14.2 19.8 27.9 28.1
FSOD-SR [25] (PR 21) 50.1 54.4 56.2 60.0 62.4 29.5 39.9 43.5 44.6 48.1 43.6 46.6 53.4 53.4 59.5
DeFRCN† [10] (ICCV 21) 51.2 53.1 47.2 64.3 57.8 30.5 39.0 48.8 51.7 47.7 43.6 45.7 53.0 56.4 54.8
LVC [9] (CVPR 22) 54.5 53.2 58.8 63.2 65.7 32.8 29.2 50.7 49.8 50.6 48.4 52.7 55.0 59.6 59.6
ViTDet† (ECCV 22) [2] 27.1 37.2 31.9 43.9 46.2 11.1 29.5 35.7 35.1 35.9 24.4 32.5 34.3 36.7 37.9
DCFS [40] (NIPS 22) 46.2 57.4 59.9 62.9 64.5 32.6 39.9 43.4 47.9 51.3 40.3 50.5 53.8 56.9 60.7
Meta-DETR [19] (TPAMI 22) 35.1 49.0 53.2 57.4 62.0 27.9 32.3 38.4 43.2 51.8 34.9 41.8 47.1 54.1 58.2
Norm-VAE [42] (CVPR 23) 62.1 64.9 67.8 69.2 67.5 39.9 46.8 54.4 54.2 53.6 58.2 60.3 61.0 64.0 65.5
imTED† (ICCV 23) [23] 11.2 12.3 13.6 34.8 44.8 4.4 9.8 22.1 18.4 35.9 9.9 16.9 18.3 35.3 35.8
D&R† (AAAI 23) [26] 60.4 64.0 65.2 64.7 66.3 37.9 46.8 48.1 52.7 53.1 55.7 57.9 57.6 60.6 61.9

TFA (ICML 20) [22] + xPAND
22.8
↑1.5

28.4
↑5.6

28.3
↑3.1

39.1
↑10.4

44.2
↑9.9

6.9
↓0.2

13.0
↓3.6

14.0
↓8.0

20.8
↓1.3

24.3
↑5.1

16.2
↑0.1

14.4
↑0.2

22.8
↑3.0

35.8
↑7.9

34.8
↑6.7

DeFRCN (ICCV 21) [10] + xPAND 60.6
↑9.4

61.6
↑8.5

60.3
↑13.1

64.9
↑0.6

61.1
↑3.3

41.4
↑10.9

42.3
↑3.3

47.9
↓0.9

51.6
↓0.1

50.2
↑2.5

38.8
↓4.8

50.2
↑4.5

56.2
↑3.2

58.4
↑2.0

58.8
↑4.0

ViTDet (ECCV 22) [2] + xPAND
31.4
↑4.3

40.2
↑3.0

47.7
↑15.8

58.6
↑14.7

60.8
↑14.6

14.8
↑3.7

22.9
↓6.6

26.1
↓9.6

36.7
↑1.6

42.0
↑6.1

23.2
↓1.2

27.0
↓5.5

44.7
↑10.4

51.7
↑15.0

52.7
↑14.8

imTED (ICCV 23) [23] + xPAND
11.6
↑0.4

21.9
↑9.6

30.0
↑16.4

45.9
↑11.1

47.0
↑2.2

10.7
↑6.3

18.2
↑8.4

30.2
↑8.1

28.4
↑10.0

34.5
↓1.4

18.0
↑8.1

28.7
↑11.8

35.5
↑17.2

41.3
↑6.0

46.3
↑10.5

D&R (AAAI 23) [26] + xPAND 61.7
↑1.3

69.5
↑5.5

70.0
↑4.8

71.2
↑6.5

70.7
↑4.4

36.4
↓1.5

47.9
↑1.1

49.9
↑1.8

56.0
↑3.3

55.5
↓2.4

56.5
↑0.8

60.0
↑2.1

61.6
↑4.0

64.2
↑3.6

65.7
↑3.8
Table 6
VOC results following the experimental setting from [22]. Numbers beside the arrows show the difference with the corresponding baseline (blue increase, red
decrease). † indicates our own experiments. ±𝑥 is the confidence interval.

Novel Set 1 Novel Set 2 Novel Set 3
Method 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

TFA† (ICML 20) [22]
19.4
±3.7

27.2
±3.5

30.2
±4.5

32.0
±3.8

35.5
±1.3

10.5
±4.1

18.6
±2.0

20.5
±2.3

22.7
±2.7

26.4
±3.6

10.4
±4.2

15.6
±2.2

20.4
±2.6

25.3
±2.9

31.7
±2.2

TFA† + xPAND
22.9
±0.9

30.0
±3.2

32.9
±2.5

39.1
±1.6

43.4
±1.7

12.2
±2.5

20.8
±4.6

21.2
±6.0

20.1
±2.2

27.0
±1.4

11.8
±3.5

18.9
±2.5

26.1
±2.3

32.9
±2.1

36.8
±1.3

↑ 𝟑.𝟓 ↑ 𝟐.𝟖 ↑ 𝟐.𝟕 ↑ 𝟕.𝟏 ↑ 𝟕.𝟗 ↑ 𝟏.𝟖 ↑ 𝟐.𝟏 ↑ 𝟎.𝟕 ↓ 𝟐.𝟔 ↑ 𝟎.𝟓 ↑ 𝟏.𝟒 ↑ 𝟑.𝟑 ↑ 𝟓.𝟕 ↑ 𝟕.𝟔 ↑ 𝟓.𝟐

DeFRCN† (ICCV 21) [10]
44.0
±3.6

55.4
±3.5

55.9
±4.9

61.8
±1.9

60.7
±4.5

30.2
±3.2

40.1
±2.6

45.5
±2.3

49.6
±1.7

52.1
±3.1

34.6
±8.3

48.0
±5.5

50.9
±3.6

54.8
±3.2

58.3
±1.7

DeFRCN† + xPAND
49.5
±6.0

57.8
±2.7

59.3
±3.8

66.1
±1.4

62.3
±4.0

34.1
±4.3

41.7
±3.6

45.7
±2.8

48.8
±3.0

51.5
±1.8

39.5
±9.8

52.0
±2.8

55.2
±2.4

57.1
±2.2

58.6
±0.8

↑ 𝟓.𝟓 ↑ 𝟐.𝟒 ↑ 𝟑.𝟒 ↑ 𝟒.𝟑 ↑ 𝟏.𝟕 ↑ 𝟑.𝟗 ↑ 𝟏.𝟔 ↑ 𝟎.𝟐 ↓ 𝟎.𝟖 ↓ 𝟎.𝟔 ↑ 𝟒.𝟗 ↑ 𝟒.𝟎 ↑ 𝟒.𝟑 ↑ 𝟐.𝟑 ↑ 𝟎.𝟑

ViTDet† (ECCV 22) [2]
24.7
±4.6

36.5
±5.3

38.4
±5.2

39.3
±4.9

40.9
±3.9

13.7
±2.4

22.8
±4.4

30.1
±4.9

32.7
±4.2

36.0
±3.0

18.2
±4.5

29.5
±6.8

33.4
±6.4

34.9
±4.0

36.8
±4.2

ViTDet† + xPAND
25.4
±4.2

39.0
±3.9

38.7
±3.7

53.2
±3.3

58.7
±1.8

13.0
±3.8

22.2
±2.3

29.7
±4.2

34.0
±3.8

42.1
±1.8

16.8
±4.9

31.2
±4.4

35.5
±7.0

45.8
±4.2

51.4
±3.6

↑ 𝟎.𝟔 ↑ 𝟐.𝟓 ↑ 𝟎.𝟑 ↑ 𝟏𝟑.𝟗 ↑ 𝟏𝟕.𝟖 ↓ 𝟎.𝟕 ↓ 𝟎.𝟔 ↓ 𝟎.𝟓 ↑ 𝟏.𝟑 ↑ 𝟔.𝟏 ↓ 𝟏.𝟓 ↑ 𝟏.𝟖 ↑ 𝟐.𝟏 ↑ 𝟏𝟏.𝟎 ↑ 𝟏𝟒.𝟕

imTED† (ICCV 23) [23]
8.3
±2.7

21.3
±4.6

21.6
±5.6

36.8
±1.7

47.3
±3.6

5.4
±1.6

11.4
±1.8

16.6
±2.5

22.7
±3.1

34.0
±4.0

6.0
±3.3

15.8
±2.5

20.8
±6.7

31.0
±5.9

42.4
±3.3

imTED† + xPAND
10.8
±2.4

29.3
±4.2

36.9
±4.9

36.9
±4.4

44.6
±2.0

10.0
±2.4

17.0
±1.3

23.3
±4.9

28.6
±3.4

36.3
±2.0

9.0
±6.2

28.7
±1.5

34.5
±3.4

37.6
±5.1

47.1
±1.0

↑ 𝟐.𝟓 ↑ 𝟖.𝟎 ↑ 𝟏𝟓.𝟑 ↑ 𝟎.𝟏 ↓ 𝟐.𝟔 ↑ 𝟒.𝟕 ↑ 𝟓.𝟔 ↑ 𝟔.𝟔 ↑ 𝟓.𝟗 ↑ 𝟐.𝟑 ↑ 𝟑.𝟎 ↑ 𝟏𝟑.𝟎 ↑ 𝟏𝟑.𝟔 ↑ 𝟔.𝟔 ↑ 𝟒.𝟔

D&R† (AAAI 23) [26]
42.3
±9.0

57.0
±4.8

55.6
±6.4

62.3
±3.7

64.9
±3.4

34.3
±3.4

42.8
±4.0

46.0
±2.9

49.8
±1.9

53.4
±0.9

35.4
±11.9

49.0
±6.2

54.3
±4.1

59.3
±2.1

60.0
±1.1

D&R† + xPAND
47.0
±7.9

63.2
±4.0

62.4
±5.4

67.3
±3.4

69.0
±3.1

31.9
±4.0

41.9
±3.7

46.8
±2.0

52.3
±2.1

55.6
±2.7

39.1
±11.8

57.3
±2.3

60.6
±1.1

63.1
±1.0

63.8
±1.0

↑ 𝟒.𝟕 ↑ 𝟔.𝟐 ↑ 𝟔.𝟖 ↑ 𝟓.𝟎 ↑ 𝟒.𝟏 ↓ 𝟐.𝟒 ↓ 𝟎.𝟗 ↑ 𝟎.𝟖 ↑ 𝟐.𝟓 ↑ 𝟐.𝟐 ↑ 𝟑.𝟕 ↑ 𝟖.𝟑 ↑ 𝟔.𝟑 ↑ 𝟑.𝟖 ↑ 𝟑.𝟖
t
a
W
b
x
i
o

Table 7 presents the results. Using the two best-performing models
s baselines for each dataset tested —MS COCO and PASCAL VOC—
e compare xPAND and CLIP both separately and in combination. The

esults for CLIP are obtained by filtering the detections from the base
etector to exclude instances where the predicted category does not
lign with CLIP’s predictions. The combined results of CLIP+xPAND
re achieved by incorporating CLIP’s knowledge into xPAND as an
dditional step to recover discarded pseudo-labels. Specifically, the
seudo-labels eliminated by Class Confirmation or Box Confirmation,
ut whose class coincides with the class predicted by CLIP, are recov-
red.

CLIP outperforms xPAND in small-shot scenarios —COCO 10-shot
and VOC 1-10-shot— due to its strong zero-shot capabilities, lever-
aging its pretrained alignment of visual and textual representations
on vast image–text pairs. However, as the number of labeled samples
increases, xPAND surpasses CLIP by better utilizing task-specific la-
beled data, extracting more detailed and specialized knowledge that
improves performance in higher shot settings—COCO 30-shot and VOC
20,30-shot.
 x

8 
However, the most significant finding is that the combination of
CLIP and xPAND yields the best performance, highlighting the com-
plementarity of both methods. CLIP’s strong zero-shot generalization,
and xPAND’s ability to exploit labeled data to obtain new training
samples, demonstrate that integrating these approaches can enhance
the robustness of pseudo-labeling techniques

4.6. Qualitative results

Fig. 9, shows some qualitative visualizations of the detected novel
objects on MS-COCO dataset. Each pair of images emphasizes the dis-
inctions between the detector trained with the starting annotated data
nd the one trained with the pseudo-labels obtained through xPAND.
e showcase both successful (green boxes), and failure instances (red

oxes). Results show the improvement of those methods based on
PAND for both classification and object localization. Furthermore, it
s clear that xPAND contributes to decrease the number of undetected
bjects. All of these observations strongly support the reliability of
PAND.
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Fig. 9. Visualization results on 30-shot MS-COCO dataset. We show the bounding boxes with score over 0.5. Each image pair illustrates the outcomes without xPAND (left) and
with xPAND (right). Each row corresponds to a method, listed from top to bottom as TFA, DeFRCN, ViTDet, imTED, and D&R. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
Table 7
Comparison of results between CLIP alone, xPAND alone, and their combination. Best
results for each dataset are highlighted in bold.

MS COCO
Method 10 30

imTED 22.5 30.2
imTED + CLIP 28.6 32.4
imTED + xPAND 27.5 33.7
imTED + xPAND + CLIP 31.4 36.5

PASCAL VOC
Method 1 2 3 5 10 20 30

D&R 51.3 56.2 57.0 59.3 60.4 61.5 63.4
D&R + CLIP 56.6 62.7 62.8 65.1 64.1 62.9 64.7
D&R + xPAND 51.5 59.1 60.5 63.8 64.0 63.3 65.2
D&R + xPAND + CLIP 57.2 63.1 63.3 65.2 64.7 63.5 65.1

5. Conclusion

We have presented xPAND, a pseudo-label mining pipeline designed
to produce diverse and high-quality pseudo-labels for training detectors
within a few-shot framework. Grounded on Class and Box Confirmation
modules, xPAND effectively filters out numerous low-quality pseudo-
labels initially present in the pseudo-label set. xPAND can be combined
with any object detector, either few-shot or standard, generally improv-
ing nAP across all datasets and shot sizes, and establishing a new state
of the art on both MS COCO and VOC datasets.
9 
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